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Intoduction

This is an introduction to compartmental models, a widely
assumed model in pharmacokinetics. Compartmental models
are defined by differential equations. They serve as a good
introduction to a broader class of models called dynamical
systems. This is a general introduction followed by a detailed
analysis of a one compartment model.

2



A Compartmental System

Figure 1: A fish tank separated into three compartments by per-
meable membranes.
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Description

The tank in Figure 1 is filled with a medium, and a substance is
placed in one of the compartments in addition to the medium.
This system, along with rules on the movement of the
substance, is an idealized representation of a compartmental
model. The interest is in the movement of the substance from
compartment to compartment.
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A More Complicated System

The fish tank model is a vast
oversimplification of the system at the
right. Amazingly, compartmental models
often provide a good representation of
the movement of a drug through the
body.

The figure was drawn by daughter Diane
in about the eighth grade.

5



Kinetics

Kinetics is a science that deals with the effects of forces upon
the motions of material bodies or with changes in physical or
chemical systems. In this general definition, the nature of the
forces is unspecified.

Here it is assumed that the forces are characterized by
differential equations. This provides the rules for the
movement of the substance from compartment to
compartment.
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First Order Kinetics

(t) is the amount of a substance in a compartment at time t
and ̇(t) is its derivative with respect to t. A situation where

̇(t) = −θ(t)

is first order kinetics. The parameter θ is a rate constant.
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Zero Order Kinetics

A situation where
̇(t) = α

is zero order kinetics. The parameter α is an infusion rate.
Imagine slowly pouring a substance into a compartment of the
fish tank at a constant rate.
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The Kinetic Diagram

When modeling the movement of a drug in the human body,
the first step is to create a kinetic diagram as follows:

1. Determine what components of the system are to be
represented by a compartment.

2. Determine the inputs to the system and the associated
rate constants. Inputs may be zero order or bolus
injections.

3. Determine the possible transfers between compartments
and the rate constant associated with each transfer.
Transfers between compartments are first order.
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A Model with Zero and First Order Kinetics

Central Peripheral

θ1

θ2
θ3

α

Figure 2: A model with both zero and first order kinetics

My convention is that an arrow originating from a
compartment is a first order transfer, and other arrows
represent zero order inputs.
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Implied Differential Equations

Let 1(t) and 2(t) represent the respective amounts of
substance in the two compartments at time t. The differential
equations implied by the diagram of Figure 2 are
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Pharmacological objectives

Things that might be learned, depending on the situation, are

• the uptake rate and steady state level of a heavy metal in
animal tissue;

• the average time a drug stays at its site of action;

• the relative bioavailability of two drugs;

• the relationship between drug concentration in a
compartment and symptom relief.

Regardless of the situation, one must estimate the parameters
and check that the model is at least plausible.
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An exercise

Exercise 1. Give the differential equations associated with
the kinetic diagram:

GI tract Central Peripheral

Urine

θ4

θ1

θ2

θ3
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Modeling Mercury Pollution in Fish

This exercise is to model the mercury content in the tissue of a
fish that is swimming in water polluted with mercury. A
compartmental model is used to describe the absorption and
elimination of mercury by the tissue of the fish over time. The
model is fit to the data to find estimates of the parameters and
a formula for the concentration of mercury in the fish.
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The Kinetic Diagram

The kinetic diagram is

Tissue
θα

.

The arrow coming from the left represents a zero order input.
Since the body of water is essentially infinite relative to the
mass of the fish, zero order input seems plausible. The
parameter α is an infusion rate and θ is an elimination rate
constant.

15



The Differential Equation

Time t is measured in days. At time t = 0 the fish is moved
from uncontaminated water into polluted water. (t)
represents the concentration of mercury in the tissue of the
fish at time t. The differential equation is

̇(t) = α − θ(t)

where (0) = 0.
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The Solution

Steps to the solution are

̇(t) + θ(t) = α

(̇(t) + θ(t))exp(θ t) = α exp(θ t)
(t)exp(θ t) = (α/θ)exp(θ t) + d

(t) = (α/θ) + dexp(−θ t)
(t) = (α/θ)(1 − exp(−θ t))

That (0) = 0.0 implies that the constant of integration d is
−α/θ.
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Statistical analysis

Given the formula for the response, it remains to estimate the
parameters, plot the response, and other things depending on
the context. Here the fish was biopsied on selected days
following being placed in the polluted water. The concentration
of Mercury in the tissue was recorded.
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The data

The data are unpublished from the Savannah River
Laboratories:

Day Concentration
 t Y
1 1 0.1352
2 2 0.2168
3 3 0.2545
4 4 0.3258
5 6 0.3313
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The Observational Model

The observational model is

Y = (α/θ)(1 − exp(−θ t)) + ε.

Under the assumption that the ε are uncorrelated with equal
variances, it is appropriate to use least squares to estimate the
parameters.
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Fitting the model to data

To fit the model to the data we find the values of α and θ that
minimize

5
∑

=1

(Y − (t))2.

The minimizing values are the least squares estimators of α
and θ.
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Parameter estimates

Table 1: Parameter estimates and standard errors

Parameter Value Standard error

θ 0.458773 0.0731083
α 0.165964 0.017074
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Response functions

Table 2: Response functions

1 exp(−0.458773 t)

Fish 0.361756 -0.361756

In a small example like this one, the response function can be
written as a formula:

η(t) = 0.361756(1 − exp(−0.458773 t)).

A plot of this function superimposed on the data is given on
the next slide.
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Plot of the Data and Fitted Values
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Wrap-up

In models where there is only one independent variable, plots
like the above not only show the response but also the
adequacy of the model.

The value 0.361756 represents the steady-state value.
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